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Towards direct simulations of counterflow flames with

consistent differential-algebraic boundary conditions

Panayotis D. Kourdis ∗

Mechanical and Civil Engineering Dept., California Institute of Technology, Pasadena, CA 91125, USA

Josette Bellan †

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Mechanical and Civil Engineering Dept., California Institute of Technology, Pasadena, CA 91125, USA

Kenneth Harstad ‡

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

A new approach for the formulation of boundary conditions for the counterflow configu-

ration is presented. Upon discretization of the steady-state Navier-Stokes equations at the

inflow boundaries, numerically algebraic equations are imposed as boundary conditions,

while upon discretization of the unsteady Navier-Stokes equations at the outflow, differen-

tial boundaries result. It is demonstrated that the resulting numerical differential-algebraic

boundary conditions are suitable to account for the multi-directional character of the flow

at the boundaries of the counterflow configuration.

I. Introduction

The counterflow configuration provides a comprehensive framework for studying the characteristics of

non-premixed laminar and turbulent flame problems1—6 . However, apart from the simplified one-dimensional

spatial models, the fidelity of direct numerical simulations (DNSs) for the counterflow configuration in terms

of robustness/accuracy exhibit significant sensitivity to the boundary condition (BC) treatment7—9 . This

behavior is mainly due to the multi-directional character of the flow at the boundaries which must be

properly accounted by the BCs. To mitigate this problem, Yoo et al.7 developed improved BCs based on

the Navier-Stokes Characteristic Boundary Conditions10 (NSCBCs) for laminar and turbulent counterflow

flames. The major improvement consisted in introducing the (no-longer negligible) transverse terms into

the Locally One Dimensional Inviscid (LODI) relations in order to capture the multi-dimensional effects at

the inflow/outflow boundaries. However, two major shortcomings can also be identified with the improved

NSCBCs. First, they preserve the use of relaxation coefficients entering the improved LODI relations and

these coefficients are problem specific. These coefficients provide an optimal balance between achieving the

prescribed upstream values for the inflow variables and reducing spurious wave reflections, and usually must

be determined through a trial and error process; this is an expensive, time-consuming procedure. Second,

once derived for real-gas, the implementation of these revised NSCBCs adds a considerable computational

cost.

In this work, we adopt a totally different viewpoint for constructing BCs for the counterflow configuration

that results in a very concise framework. In particular, we combine the steady-state Navier-Stokes equations

with an initial flow of potential type to construct numerically consistent algebraic BCs at the inflow bound-

aries. The structure of the paper is as follows. First, the governing equations of the problem are presented.

A detailed discussion on the construction of the initial profile of the flow follows. Then, the new BCs are pro-

vided for the inflow and outflow boundaries. The specifics regarding the numerical implementation that was

∗Caltech Postdoctoral Scholar, AIAA Member.
†Senior Research Scientist, AIAA Fellow (Corresponding Author. Email: josette.bellan@jpl.nasa.gov).
‡Senior Engineer.
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employed follows. Next, the validation of the proposed differential-algebraic BCs with numerical examples is

performed. Finally, a summary is given and several aspects regarding the proposed approach are discussed.

II. Governing equations

A. The Navier-Stokes equations

The Navier-Stokes (NS) equations for a compressible reacting multicomponent mixture of species expressed

in terms of the conservative variables eU = [e] ( = 1      + 4) where

eU ≡ [ 1 2 3 1     −1 ] (1)

and in Cartesian coordinates are




+

()


= 0 (2)

()


+

()


+




=

 


(  = 1 2 3) (3)

()


+

()


= −


+ ̇ ( = 1      − 1) (4)

()


+

[( + ) ]


= − 


+

( )


(5)

where the indices  and  follow the summation convention,  is time,  is the -th spatial coordinate, 

is the mass density of the fluid,  is the -th component of the velocity vector,  is the mass fraction of

species ,  is the pressure,  =  + 1
2 is the total specific energy ( stands for the specific internal

energy),  is the -th component of the mass flux vector J of species ,  is the -th component of the
heat flux vector q and ̇ is the mass-production rate of species . Finally,   is the Newtonian viscous

stress tensor

  = 

µ



+




− 2
3






¶
 (6)

where  is the dynamic viscosity of the mixture and  is the Kronecker delta. In the present equations,

body forces have been neglected.

Letting F = [ 
] ( = 1      + 4) denote the flux vector of the conservative variables along the -th

direction, i.e.

F ≡ [ 1 + 1 2 + 2 3 + 3 1     −1 ( + )]
  (7)

the NS equations can be cast in compact form as

 eU


+
F


= eC (8)

where the vector eC = [] ( = 1      + 4) is defined as

eC ≡ [0 1



2



3


−1


+ ̇1    −−1


+ ̇−1− 


+

( )


]  (9)

When eC = 0, one obtains the compressible Euler equations augmented by the species equations.
B. The expressions for the heat, mass fluxes and viscosity of the mixture

Here we employ the generalized heat and mass transport equations based on the fluctuation-dissipation

theory11—13 . The mixing rules employed for the computation of the mass diffusion coefficients and thermal

diffusion factors have been derived by Harstad & Bellan14 and are based on the coupling of nonequilibrium

thermodynamics11 and Grad’s 13-moment theory15 .
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In the above setting, having neglected the term proportional to ∇ since it is anticipated that its
contribution is minimal, the mass flux vector of species  reads

J = −
"X



( −)




∇ + 

∇


#
 (10)

where  is species n molar mass,  are the pairwise mass diffusion coefficients and

 =
X




  = −

X


̄

 (11)

 =
X


 ̄ =
X
 6=



 (12)

where  is the mole fraction of species , 

 are the binary thermal diffusion factors and  are the

mass diffusion factors which are calculated in conjunction with the EOS as

 =




+

 ln 


 (13)

with  = 

, where  is the fugacity coefficient of species  and the superscript o denotes the single

species ( = 1) limit. The elements 

 are obtained as the solution of the mixing rules equationsX



∙
 − (1− )

̄





¸





= ̄


( − )



 (14)

where

̄
 =

1X
6=






 (15)

and where 
 is the full-approximation binary diffusivity. A solution for 


 can be obtained through an

approximate inversion16 as follows


 ≈ 

(1)
  (16)

where


(1)
 =

µ
1 + 



¶
∗ + (1− )

∗
∗





− (∗ + 
∗
) +

X



∗
  (17)

∗ = (1− )̄

 (18)

 =



(1 + ) +

X
6=


∗



 (19)

and where  is the mixture’s molar mass. To avoid in the above method artificial singularities for mixtures

with vanishing mass-fractions, we follow the procedure of the EGLIB multicomponent transport property

library17, 18 . To this end, we first calculate perturbed mole fractions as


 =  + 

µP



−

¶
 (20)

where  = 10−16 is a small parameter. Then we evaluate the perturbed molar mass of the mixture  =P



  and finally the perturbed mass fractions as

 
 =





  (21)

The heat flux vector reads

q = −∇ +
X


( − ̄

)

J


 (22)

where  is the thermal conductivity,  the universal gas constant and  the partial molar enthalpy of

species .
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Figure 1. The initial potential flow entering through the left  and right 00 inlet boundaries and exiting
through the lower 0 and 0 boundaries. The solid lines represent the streamlines and the arrows the

direction of the flow.

C. Transport properties

Transport properties were computed according to the most up-to-date methods14, 19—21 .

D. Equation of state

All NS equations are coupled with an EOS which is selected here to be the Peng-Robinson (PR) EOS22

 =


 − 

− 

2 + 2 − 2

(23)

from which  and  are obtained as an iterative solution of two nonlinear equations that satisfy both the

values of  and  as obtained from the solution of the conservation equations. In the PR EOS,  is the

PR molar volume and it holds  =  +  where  is the volume shift that improves the accuracy of the

PR EOS for high-pressure conditions23 , while the terms  and  are functions of  and .

III. Initial profile: Inviscid incompressible potential flow

The initial flow is a two-dimensional potential flow in which two opposing streams, each of constant

density and composition, are injected from the two boundaries  and 00 of length  in the -direction;
the streams exit the domain through the two boundaries  and 00 of length  at the -direction as

illustrated in Fig. (1). At the point  of the left inlet boundary, reference inflow variables   

  




and  are specified and their values are constant with time. Similarly, at the point 
0 of the right inlet

boundary, reference constant in time inflow variables   

  


 and  are specified. The reference

pressures at the two inlets are set equal, i.e.  =  =  , so that for the initial flow described in the

following, the stagnation point (S) is always located at the centerline with  = 2 and also  = 2.
The density field is given as

0( ) =

(
 if 0 ≤   2∀
 if 2   ≤ ∀

 (24)

where a discontinuity arises to 0( ) at  = 2∀ when  6=  . The species initial mass fraction

fields are given as

 0
 ( ) =

(
 
 if 0 ≤   2∀

 
 if 2   ≤ ∀

 (25)
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with  = 1      and a discontinuity arises to  0
 ( ) at  = 2∀ when  

 6=  
 . The

components of the initial velocity field are

0( ) = −
2(− 2)

1 +
q





 (26)

0( ) =
2( − 2)

1 +
q





 (27)

for 0 ≤   2∀, while for 2   ≤ ∀ are

0( ) = −
2(− 2)

1 +
q





 (28)

0( ) =
2( − 2)

1 +
q





 (29)

where  is the strain rate. 0( ) is continuous ∀( ), while 0( ) has a discontinuity at  = 2∀
when  6=  .

Using (i) the common reference pressure,  , of points  and 0, (ii) the Bernoulli equation which
holds for inviscid incompressible flows and (iii) the fact that for irrotational (i.e. potential) flows the total

pressure, as given by the Bernoulli equation, is the same for all points of the flow (otherwise the Bernoulli

equation would only hold along a streamline), we obtain the initial pressure field, 0 as

0( ) =  +
1

2


h¡
0(  

¢2
+
¡
0(  )

¢2i− 1
2


h¡
0( )

¢2
+
¡
0( )

¢2i
 (30)

for 0 ≤   2∀, where  = 0 and  = 2, while for 2   ≤ ∀ 0 is given by

0( ) =  +
1

2


h¡
0(0  0)

¢2
+
¡
0(0  0)

¢2i− 1
2


h¡
0( )

¢2
+
¡
0( )

¢2i
 (31)

where 0 =  and 0 = 2.
By construction, the initial potential flow satisfies the steady-state incompressible Euler’s equations which

in “compressible" form can be expressed as

(00)


+

(00)


= 0 (32)

(00
0
)


+

(00
0
)


+

0


= 0 (33)

(00
0
)


+

(00
0
)


+

0


= 0 (34)

(0 0


0
)


+

(0 0


0
)


= 0 ( = 1      − 1) (35)

∀  except for the locations at the interface line of the two streams, i.e. the points with  = 2∀. Equa-
tions (32)-(35) will be used next as a basis for constructing inflow boundary conditions for the NS equa-

tions. The availability of 0( ) 0( )  0
1 ( )     

0
 ( ) in conjunction with the EOS allows the

determination of the initial temperature field of the flow,  0( ), by solving

0( ) = ( 0( ) 0( )  0
1 ( )     

0
 ( )) (36)

for  0( ) where 0( ) is given by Eqs. (30)-(31), 0( ) is given by Eq. (24) and  0
 ( ) ( = 1     )

by Eq. (25). With the calculated  0( ), the initial specific internal energy field

0( ) = ( 0( ) 0( )  0
1 ( )     

0
 ( )) (37)

of the flow is calculated as well. It follows that the initial field of conservatives variables, Ũ0( ), can then
be readily constructed.

Finally, we note that for the counterflow configuration the use of a potential flow as initial flow is consistent

with the fact that even when starting computations with a plug flow (i.e. zero y-components of the velocity

vector at the inlets), the flow quickly converges to a potential type.
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IV. Boundary conditions

A. Inflow boundary conditions

Instead of explicitly imposing timewise constant boundary values (also known as hard BCs) for the conser-

vative variables at the two inlets  and 00, we impose the steady-state NS compressible conservation
equations

()


+

()


= 0 (38)

()


+

()


+




=




+




(39)

()


+

()


+




=




+




(40)

()


+

()


= −


− 


+ ̇ ( = 1      − 1) (41)

for    1     −1. Using these equations as BCs means that the initial values imposed on the
inlets  and 00 for these variables are implicitly constrained to be constant with time. Most importantly,
the transverse terms that give rise to multi-directional effects at the inflow boundaries are inherently present

in the BCs. In addition to the above BCs, a simple algebraic equation of the form

 = ̄( ( ) ( ) 1( )      ( )) (42)

is used for the boundary values of  at the two inlets, where ̄ is calculated using the current values of

   1     −1 and calculating  from the EOS and then ̄, so that the values of ̄ are readily

available.

By construction, the initial values of    1     −1 at the inlets, as given by the potential
flow of Section III, satisfy the Euler instead of the NS steady-state equations. Since the inlet boundaries are

usually located away from the flame, these initial values provide a good initial guess for the NS steady-state

equations which can be corrected24 to account the viscous and species mass-flux effects.

B. Outflow boundary conditions

At the outflow boundaries 0 and 0, the solution satisfies the unsteady NS equations since the conditions
there are the outcome of the processes taking place in the interior of the domain. At these boundaries we

assume that  stays constant with time as initially provided by the Bernoulli equation.

V. Numerical scheme

An eight-order explicit finite-difference scheme is used for the spatial derivatives. After spatially dis-

cretized, the steady-state NS equations become algebraic equations at a node, whereas the unsteady NS

equations become ordinary differential equations at a node. As a result, at the nodes of the inflow bound-

aries  and 00, the BCs are of algebraic type since Eqs. (38)-(41) and Eq. (42) become algebraic
equations. In addition, auxiliary ghost points can be used from the left of the boundary  and the right

of the boundary 00 (since the solution is known there) to enhance the finite difference approximation of
the spatial derivatives in Eqs. (38)-(41). At the nodes of outflow boundaries 0 and 0, the BCs are of
differential type and one-sided finite differencing is used.

The resulting numerical system of differential-algebraic equations25 is integrated in time with the differential-

algebraic solver IDA of the SUNDIALS suite26 . The integration method used in IDA is a variable-order,

variable-coefficient BDF (Backward Differentiation Formula), in fixed-leading-coefficient form where the or-

der of the method varies between 1 and 5. The BDF method can handle the stiffness introduced in the

numerical integration of the NS equations due to the presence of chemical source terms. IDA supports paral-

lel computations through the message passing interface (MPI) protocol and provides a routine that computes

consistent initial conditions from a users’ initial guess24, 27 .
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VI. Reproducing non-reacting potential flows with the proposed

differential-algebraic boundary conditions

To validate the proposed differential-algebraic BCs of Section IV, we consider two symmetric non-reacting

potential flows where either H2 or O2 enters from both inlets. The goal is to numerically reproduce these

two steady-state potential flows at computational times characteristic to reaction/diffusion problems.

Table 1. The inflow conditions at the reference points  and 0 of the left and right inlet (see the right part
of Fig. (1)) used for the two symmetric H2 potential flows cases A and B.

Case Species  (kg/m
3)  (K)  (bar)  (s−1)

A H2 0.08077 300 1 2× 103
B H2 0.08077 300 1 4× 103

A. The H2 symmetric potential flow

For the symmetric H2 potential flow, two situations are considered with different strain rates: case A with

 = 2000 s−1 and case B with  = 4000 s−1. The inflow conditions are given on Table 1 and the size/meshing
parameters of the computational domain used in each simulation case on Table 2.

Figure 2. Temporal variation of     and 2 at inlet boundary points for Case A of the symmetric H2

potential flow using the differential-algebraic BCs of Section IV. The inlet conditions are shown on Table 1,

the size/meshing parameters of the computational domain on Table 2 and the labeling of the points refers to

the right part of Fig. (1).

Regarding case A, Fig. 2 shows the temporal evolution of the boundary values of    and 2 at

points on the left inlet boundary. The prescribed initial boundary values are excellently maintained by the

imposed NS steady-state BCs, Eqs. (38)-(41), at the two inlets  and 00. Moreover, Fig. 4 shows the
initial ( = 0 ms) spatial variation of     and 2 for -sections of the computational domain and

the spatial variation of the same variables obtained at  = 16 ms. Clearly, the steady-state potential flow is
accurately reproduced numerically in all respects.

Displayed in Figs. 3 and 5 are the equivalent results for Case B. The results for Case B are equally

excellent in that the potential flow is maintained even for the larger  value.
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Figure 3. Temporal variation of     and 2
at inlet boundary points for Case B of the symmetric H2

potential flow using the differential-algebraic BCs of Section IV. The inlet conditions are shown on Table 1,

the size/meshing parameters of the computational domain on Table 2 and the labeling of the points refers to

the right part of Fig. (1).

Table 2. The lengths  and  of the computational domain (see the left part of Fig. (1)) and the number of
discretization points  and  at each direction used for the simulations of the two symmetric H2 potential

flows cases A and B.

Case L [mm] L [mm] N N

A 10 10 104 104

B 10 10 144 144

B. The O2 symmetric potential flow

For the symmetric O2 potential flow one situation is considered only. The inflow conditions are given on Table

3 and the size/meshing parameters of the computational domain used in the simulation on Table 4. The

results of the simulation for O2 are illustrated in Figs. 6 and 7 which represent a simulation performed with a

fluid having a density of O(10) larger compared to that of H2 used in the previous two simulations. The same
high fidelity in maintaining numerically the imposed initial potential flow holds as in the H2 simulations.

VII. Summary and conclusions

New BCs have been developed for the counterflow configuration which provide a very concise framework

that inherently accounts the multi-directional character of the flow at the boundaries. Upon discretization

Table 3. The inflow conditions at the reference points  and 0 of the left and right inlet (see the right part
of Fig. (1)) used for the symmetric O2 potential flow.

Species  (kg/m
3)  (K)  (bar)  (s−1)

O2 1.2837 300 1 2× 103
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Figure 4. Spatial variation of     and 2 for Case A of the symmetric H2 potential flow using the

differential-algebraic BCs of Section IV. The inlet conditions are shown on Table 1, the size/meshing parameters

of the computational domain on Table 2 and the labeling of the sections refers to the right part of Fig. (1). Left

column:  = 0 ms. Right column:  = 16 ms.
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Figure 5. Spatial variation of     and 2 for Case A of the symmetric H2 potential flow using the

differential-algebraic BCs of Section IV. The inlet conditions are shown on Table 1, the size/meshing parameters

of the computational domain on Table 2 and the labeling of the sections refers to the right part of Fig. (1). Left

column:  = 0 ms. Right column:  = 6 ms.
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Figure 6. Temporal variation of     and 2
at inlet boundary points for the symmetric O2 potential flow

using the differential-algebraic BCs of Section IV. The inlet conditions are shown on Table 3, the size/meshing

parameters of the computational domain on Table 4 and the labeling of the points refers to the right part of

Fig. (1).

Table 4. The lengths  and  of the rectangular computational domain (see the left part of Fig. (1)) and

the number of discretization points  and  at each direction used for the simulation of the symmetric O2

potential flow.

L [mm] L [mm] N N

10 10 200 200

of the steady-state NS equations, the BCs at the inflow boundaries are of algebraic type, whereas upon

discretization of the unsteady NS equations, those at the outflow boundaries are of differential type. This

formulation of the numerical BCs as differential-algebraic ones requires the use of a numerical integration

software capable of handling initial-value problems for differential-algebraic systems of equations such as the

IDA of the SUNDIALS suite26 .

For the validation of the differential-algebraic BCs two symmetric non-reacting potential flows were

considered with either H2 or O2 as injected species from both inlets. For H2, two different strain rates cases

where examined. One with  = 2000 s−1 which corresponded to an injection velocity of 10m/s and one
with  = 4000 s−1 which corresponds to an injection velocity of 20m/s. For O2, a single case was examined
with  = 2000 s−1 which corresponds to an injection velocity of 10m/sec. In all simulated cases, the BCs
were able to maintain accurately the imposed boundary values at the inlet boundaries. Moreover, the initial

potential flow was reproduced with high fidelity over the entire computational domain without numerical

artifacts. For the aforementioned cases studied, there was no use of dissipative filters and there was no need

of introducing relaxation constants into the BCs.

Reactive counterflow simulations with the differential-algebraic BCs are currently being conducted and

will be the subject of a future publication.
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